Serveur d'exploration sur les peptides biopesticides

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of garden cress in reducing blood glucose, improving blood lipids, and reducing oxidative stress in a mouse model of diabetes induced by a high-fat diet and streptozotocin.

Identifieur interne : 000109 ( Main/Exploration ); précédent : 000108; suivant : 000110

Effect of garden cress in reducing blood glucose, improving blood lipids, and reducing oxidative stress in a mouse model of diabetes induced by a high-fat diet and streptozotocin.

Auteurs : Xi Chen [République populaire de Chine] ; Huaibo Yuan [République populaire de Chine] ; Fangfang Shi [République populaire de Chine] ; Yudong Zhu [République populaire de Chine]

Source :

RBID : pubmed:31875960

Descripteurs français

English descriptors

Abstract

BACKGROUND

A mouse model in which diabetes mellitus was induced by low-dose streptozotocin (STZ) injection combined with a high-fat diet was used to study the effect of two water cress (Lepidium savitum) preparations. Diabetic mice were treated with dried cress powder or with water-soluble extracts (tested at two doses), together with proper control groups. The mice were evaluated after 4 weeks of continuous intervention for type 2 diabetic and associated markers. We determined blood glucose, body weight, total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), serum insulin levels, and DNA integrity of hepatic cells. The concentrations of malondialdehyde (MDA) and lipid peroxide (LPO) and the activities of four enzymes that are part of the antioxidant defense system were determined in liver samples, as well as gene expression (by semi-quantitative reverse transcription polymerase chain reaction) and enzyme activity of IRS-1, IRS-2, PI3K, AKT-2, and GLUT4.

RESULTS

After 4 weeks of intervention, the levels of TC, TG, and LDL cholesterol were significantly (P < 0.5) decreased and HDL cholesterol was significantly increased. Enzyme activities of liver superoxide dismutase, glutathione, glutathione peroxidase, and catalase were significantly increased, whereas MDA and LPO concentrations were significantly reduced. The transcription level of the five genes assessed was increased, with corresponding increases in protein expression.

CONCLUSION

Oral uptake of garden cress can significantly reduce the blood glucose and improve the blood lipid metabolism of diabetic mice. Considerable improvements in the activity of antioxidant defense enzymes were observed in type 2 diabetic mice that improved the body's antioxidant emergency response. © 2019 Society of Chemical Industry.


DOI: 10.1002/jsfa.10230
PubMed: 31875960


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effect of garden cress in reducing blood glucose, improving blood lipids, and reducing oxidative stress in a mouse model of diabetes induced by a high-fat diet and streptozotocin.</title>
<author>
<name sortKey="Chen, Xi" sort="Chen, Xi" uniqKey="Chen X" first="Xi" last="Chen">Xi Chen</name>
<affiliation wicri:level="3">
<nlm:affiliation>School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Food and Biological Engineering, Hefei University of Technology, Hefei</wicri:regionArea>
<placeName>
<settlement type="city">Hefei</settlement>
<region type="province">Anhui</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Huaibo" sort="Yuan, Huaibo" uniqKey="Yuan H" first="Huaibo" last="Yuan">Huaibo Yuan</name>
<affiliation wicri:level="3">
<nlm:affiliation>School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Food and Biological Engineering, Hefei University of Technology, Hefei</wicri:regionArea>
<placeName>
<settlement type="city">Hefei</settlement>
<region type="province">Anhui</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shi, Fangfang" sort="Shi, Fangfang" uniqKey="Shi F" first="Fangfang" last="Shi">Fangfang Shi</name>
<affiliation wicri:level="3">
<nlm:affiliation>School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Food and Biological Engineering, Hefei University of Technology, Hefei</wicri:regionArea>
<placeName>
<settlement type="city">Hefei</settlement>
<region type="province">Anhui</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Yudong" sort="Zhu, Yudong" uniqKey="Zhu Y" first="Yudong" last="Zhu">Yudong Zhu</name>
<affiliation wicri:level="3">
<nlm:affiliation>School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Food and Biological Engineering, Hefei University of Technology, Hefei</wicri:regionArea>
<placeName>
<settlement type="city">Hefei</settlement>
<region type="province">Anhui</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31875960</idno>
<idno type="pmid">31875960</idno>
<idno type="doi">10.1002/jsfa.10230</idno>
<idno type="wicri:Area/Main/Corpus">000114</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000114</idno>
<idno type="wicri:Area/Main/Curation">000114</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000114</idno>
<idno type="wicri:Area/Main/Exploration">000114</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effect of garden cress in reducing blood glucose, improving blood lipids, and reducing oxidative stress in a mouse model of diabetes induced by a high-fat diet and streptozotocin.</title>
<author>
<name sortKey="Chen, Xi" sort="Chen, Xi" uniqKey="Chen X" first="Xi" last="Chen">Xi Chen</name>
<affiliation wicri:level="3">
<nlm:affiliation>School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Food and Biological Engineering, Hefei University of Technology, Hefei</wicri:regionArea>
<placeName>
<settlement type="city">Hefei</settlement>
<region type="province">Anhui</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Huaibo" sort="Yuan, Huaibo" uniqKey="Yuan H" first="Huaibo" last="Yuan">Huaibo Yuan</name>
<affiliation wicri:level="3">
<nlm:affiliation>School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Food and Biological Engineering, Hefei University of Technology, Hefei</wicri:regionArea>
<placeName>
<settlement type="city">Hefei</settlement>
<region type="province">Anhui</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shi, Fangfang" sort="Shi, Fangfang" uniqKey="Shi F" first="Fangfang" last="Shi">Fangfang Shi</name>
<affiliation wicri:level="3">
<nlm:affiliation>School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Food and Biological Engineering, Hefei University of Technology, Hefei</wicri:regionArea>
<placeName>
<settlement type="city">Hefei</settlement>
<region type="province">Anhui</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Yudong" sort="Zhu, Yudong" uniqKey="Zhu Y" first="Yudong" last="Zhu">Yudong Zhu</name>
<affiliation wicri:level="3">
<nlm:affiliation>School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Food and Biological Engineering, Hefei University of Technology, Hefei</wicri:regionArea>
<placeName>
<settlement type="city">Hefei</settlement>
<region type="province">Anhui</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of the science of food and agriculture</title>
<idno type="eISSN">1097-0010</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antioxidants (metabolism)</term>
<term>Blood Glucose (metabolism)</term>
<term>Catalase (metabolism)</term>
<term>Cholesterol, HDL (blood)</term>
<term>Cholesterol, LDL (blood)</term>
<term>DNA Fragmentation (MeSH)</term>
<term>Diabetes Mellitus, Experimental (prevention & control)</term>
<term>Diet, High-Fat (MeSH)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>Glucose Transporter Type 4 (genetics)</term>
<term>Glucose Transporter Type 4 (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Peroxidase (metabolism)</term>
<term>Glycated Hemoglobin A (metabolism)</term>
<term>Hypoglycemic Agents (pharmacology)</term>
<term>Insulin (blood)</term>
<term>Insulin Receptor Substrate Proteins (genetics)</term>
<term>Insulin Receptor Substrate Proteins (metabolism)</term>
<term>Lepidium sativum (chemistry)</term>
<term>Lipid Peroxides (metabolism)</term>
<term>Lipids (blood)</term>
<term>Male (MeSH)</term>
<term>Malondialdehyde (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred ICR (MeSH)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Phosphatidylinositol 3-Kinases (genetics)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Plant Extracts (pharmacology)</term>
<term>Superoxide Dismutase (metabolism)</term>
<term>Triglycerides (blood)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alimentation riche en graisse (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Antioxydants (métabolisme)</term>
<term>Catalase (métabolisme)</term>
<term>Cholestérol HDL (sang)</term>
<term>Cholestérol LDL (sang)</term>
<term>Diabète expérimental (prévention et contrôle)</term>
<term>Extraits de plantes (pharmacologie)</term>
<term>Fragmentation de l'ADN (MeSH)</term>
<term>Glutathion (métabolisme)</term>
<term>Glutathione peroxidase (métabolisme)</term>
<term>Glycémie (métabolisme)</term>
<term>Hypoglycémiants (pharmacologie)</term>
<term>Hémoglobine A glycosylée (métabolisme)</term>
<term>Insuline (sang)</term>
<term>Lepidium sativum (composition chimique)</term>
<term>Lipides (sang)</term>
<term>Malonaldéhyde (métabolisme)</term>
<term>Mâle (MeSH)</term>
<term>Peroxydes lipidiques (métabolisme)</term>
<term>Phosphatidylinositol 3-kinases (génétique)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée ICR (MeSH)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
<term>Substrats du récepteur à l'insuline (génétique)</term>
<term>Substrats du récepteur à l'insuline (métabolisme)</term>
<term>Superoxide dismutase (métabolisme)</term>
<term>Transporteur de glucose de type 4 (génétique)</term>
<term>Transporteur de glucose de type 4 (métabolisme)</term>
<term>Triglycéride (sang)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="blood" xml:lang="en">
<term>Cholesterol, HDL</term>
<term>Cholesterol, LDL</term>
<term>Insulin</term>
<term>Lipids</term>
<term>Triglycerides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glucose Transporter Type 4</term>
<term>Insulin Receptor Substrate Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Blood Glucose</term>
<term>Catalase</term>
<term>Glucose Transporter Type 4</term>
<term>Glutathione</term>
<term>Glutathione Peroxidase</term>
<term>Glycated Hemoglobin A</term>
<term>Insulin Receptor Substrate Proteins</term>
<term>Lipid Peroxides</term>
<term>Malondialdehyde</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Hypoglycemic Agents</term>
<term>Plant Extracts</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Lepidium sativum</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Lepidium sativum</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Phosphatidylinositol 3-Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phosphatidylinositol 3-kinases</term>
<term>Substrats du récepteur à l'insuline</term>
<term>Transporteur de glucose de type 4</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phosphatidylinositol 3-Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antioxydants</term>
<term>Catalase</term>
<term>Glutathion</term>
<term>Glutathione peroxidase</term>
<term>Glycémie</term>
<term>Hémoglobine A glycosylée</term>
<term>Malonaldéhyde</term>
<term>Peroxydes lipidiques</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Substrats du récepteur à l'insuline</term>
<term>Superoxide dismutase</term>
<term>Transporteur de glucose de type 4</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Extraits de plantes</term>
<term>Hypoglycémiants</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Diabetes Mellitus, Experimental</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Diabète expérimental</term>
</keywords>
<keywords scheme="MESH" qualifier="sang" xml:lang="fr">
<term>Cholestérol HDL</term>
<term>Cholestérol LDL</term>
<term>Insuline</term>
<term>Lipides</term>
<term>Triglycéride</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>DNA Fragmentation</term>
<term>Diet, High-Fat</term>
<term>Gene Expression Regulation</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred ICR</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alimentation riche en graisse</term>
<term>Animaux</term>
<term>Fragmentation de l'ADN</term>
<term>Mâle</term>
<term>Régulation de l'expression des gènes</term>
<term>Souris</term>
<term>Souris de lignée ICR</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>A mouse model in which diabetes mellitus was induced by low-dose streptozotocin (STZ) injection combined with a high-fat diet was used to study the effect of two water cress (Lepidium savitum) preparations. Diabetic mice were treated with dried cress powder or with water-soluble extracts (tested at two doses), together with proper control groups. The mice were evaluated after 4 weeks of continuous intervention for type 2 diabetic and associated markers. We determined blood glucose, body weight, total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), serum insulin levels, and DNA integrity of hepatic cells. The concentrations of malondialdehyde (MDA) and lipid peroxide (LPO) and the activities of four enzymes that are part of the antioxidant defense system were determined in liver samples, as well as gene expression (by semi-quantitative reverse transcription polymerase chain reaction) and enzyme activity of IRS-1, IRS-2, PI3K, AKT-2, and GLUT4.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>After 4 weeks of intervention, the levels of TC, TG, and LDL cholesterol were significantly (P < 0.5) decreased and HDL cholesterol was significantly increased. Enzyme activities of liver superoxide dismutase, glutathione, glutathione peroxidase, and catalase were significantly increased, whereas MDA and LPO concentrations were significantly reduced. The transcription level of the five genes assessed was increased, with corresponding increases in protein expression.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Oral uptake of garden cress can significantly reduce the blood glucose and improve the blood lipid metabolism of diabetic mice. Considerable improvements in the activity of antioxidant defense enzymes were observed in type 2 diabetic mice that improved the body's antioxidant emergency response. © 2019 Society of Chemical Industry.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31875960</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>11</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1097-0010</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>100</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>Journal of the science of food and agriculture</Title>
<ISOAbbreviation>J Sci Food Agric</ISOAbbreviation>
</Journal>
<ArticleTitle>Effect of garden cress in reducing blood glucose, improving blood lipids, and reducing oxidative stress in a mouse model of diabetes induced by a high-fat diet and streptozotocin.</ArticleTitle>
<Pagination>
<MedlinePgn>2074-2081</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jsfa.10230</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">A mouse model in which diabetes mellitus was induced by low-dose streptozotocin (STZ) injection combined with a high-fat diet was used to study the effect of two water cress (Lepidium savitum) preparations. Diabetic mice were treated with dried cress powder or with water-soluble extracts (tested at two doses), together with proper control groups. The mice were evaluated after 4 weeks of continuous intervention for type 2 diabetic and associated markers. We determined blood glucose, body weight, total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), serum insulin levels, and DNA integrity of hepatic cells. The concentrations of malondialdehyde (MDA) and lipid peroxide (LPO) and the activities of four enzymes that are part of the antioxidant defense system were determined in liver samples, as well as gene expression (by semi-quantitative reverse transcription polymerase chain reaction) and enzyme activity of IRS-1, IRS-2, PI3K, AKT-2, and GLUT4.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">After 4 weeks of intervention, the levels of TC, TG, and LDL cholesterol were significantly (P < 0.5) decreased and HDL cholesterol was significantly increased. Enzyme activities of liver superoxide dismutase, glutathione, glutathione peroxidase, and catalase were significantly increased, whereas MDA and LPO concentrations were significantly reduced. The transcription level of the five genes assessed was increased, with corresponding increases in protein expression.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Oral uptake of garden cress can significantly reduce the blood glucose and improve the blood lipid metabolism of diabetic mice. Considerable improvements in the activity of antioxidant defense enzymes were observed in type 2 diabetic mice that improved the body's antioxidant emergency response. © 2019 Society of Chemical Industry.</AbstractText>
<CopyrightInformation>© 2019 Society of Chemical Industry.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xi</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-8103-6173</Identifier>
<AffiliationInfo>
<Affiliation>School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yuan</LastName>
<ForeName>Huaibo</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Fangfang</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7315-7194</Identifier>
<AffiliationInfo>
<Affiliation>School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Yudong</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-7741-965X</Identifier>
<AffiliationInfo>
<Affiliation>School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Sci Food Agric</MedlineTA>
<NlmUniqueID>0376334</NlmUniqueID>
<ISSNLinking>0022-5142</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008076">Cholesterol, HDL</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008078">Cholesterol, LDL</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051275">Glucose Transporter Type 4</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006442">Glycated Hemoglobin A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007328">Insulin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055504">Insulin Receptor Substrate Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C526295">Irs1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C526298">Irs2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008054">Lipid Peroxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008055">Lipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010936">Plant Extracts</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C495693">Slc2a4 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014280">Triglycerides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4Y8F71G49Q</RegistryNumber>
<NameOfSubstance UI="D008315">Malondialdehyde</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.6</RegistryNumber>
<NameOfSubstance UI="D002374">Catalase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.9</RegistryNumber>
<NameOfSubstance UI="D005979">Glutathione Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002374" MajorTopicYN="N">Catalase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008076" MajorTopicYN="N">Cholesterol, HDL</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008078" MajorTopicYN="N">Cholesterol, LDL</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053938" MajorTopicYN="N">DNA Fragmentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003921" MajorTopicYN="N">Diabetes Mellitus, Experimental</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059305" MajorTopicYN="Y">Diet, High-Fat</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051275" MajorTopicYN="N">Glucose Transporter Type 4</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005979" MajorTopicYN="N">Glutathione Peroxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006442" MajorTopicYN="N">Glycated Hemoglobin A</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007328" MajorTopicYN="N">Insulin</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055504" MajorTopicYN="N">Insulin Receptor Substrate Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031220" MajorTopicYN="N">Lepidium sativum</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008054" MajorTopicYN="N">Lipid Peroxides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008055" MajorTopicYN="N">Lipids</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="Y">blood</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008315" MajorTopicYN="N">Malondialdehyde</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008813" MajorTopicYN="N">Mice, Inbred ICR</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010936" MajorTopicYN="N">Plant Extracts</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014280" MajorTopicYN="N">Triglycerides</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">antioxidant stress</Keyword>
<Keyword MajorTopicYN="N">cress super powder</Keyword>
<Keyword MajorTopicYN="N">insulin resistance</Keyword>
<Keyword MajorTopicYN="N">type 2 diabetes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31875960</ArticleId>
<ArticleId IdType="doi">10.1002/jsfa.10230</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Diabetes Society of Chinese Medical Association, Diabetes Prevention and Treatment Guideline in China. Peking University Medical Press, Beijing, China (2004).</Citation>
</Reference>
<Reference>
<Citation>Calne R, Cell transplantation for diabetes. Philos Trans Biol Sci 360:1769-1774 (2005).</Citation>
</Reference>
<Reference>
<Citation>Jiang ZY, Zhou QL, Coleman KA, Chouinard M, Boese Q and Czech MP, Insulin signaling through Akt/protein kinase B analyzed by small interfering RNA-mediated gene silencing. Proc Natl Acad Sci U S A 100:7569-7574 (2003).</Citation>
</Reference>
<Reference>
<Citation>Guo S, Copps KD, Dong X, Park S, Cheng Z, Pocai A et al., The Irs1 branch of the insulin signaling cascade plays a dominant role in hepatic nutrient homeostasis. Mol Cell Biol 29:5070-5083 (2009).</Citation>
</Reference>
<Reference>
<Citation>Buteau J and Accili D, Regulation of pancreatic β-cell function by the forkhead protein FoxO1. Diabetes Obes Metab 9:140-146 (2007).</Citation>
</Reference>
<Reference>
<Citation>Deng YT, Chang TW, Lee MS and Lin JK, Suppression of free fatty acid-induced insulin resistance by phytopolyphenols in C2C12 mouse skeletal muscle cells. J Agric Food Chem 60:1059-1066 (2012).</Citation>
</Reference>
<Reference>
<Citation>Sundaram R, Shanthi P and Sachdanandam P, Iridoid glucoside attenuates hyperglycemia-mediated oxidative stress and thyroid hormone function in streptozotocin-induced diabetic rats. Biomed Prev Nutr 4:63-70 (2014).</Citation>
</Reference>
<Reference>
<Citation>Suhaila M, Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovasular disease. Trends Food Sci Technol 35:114-128 (2014).</Citation>
</Reference>
<Reference>
<Citation>Baluchnejadmojarad T, Kiasalari Z, Afshin-Majd S, Ghasemi Z and Roghani M, S-Allyl cysteine ameliorates cognitive deficits in streptozotocin-diabetic rats via suppression of oxidative stress, inflammation, and acetylcholinesterase. Eur J Pharmacol 794:69-76 (2017).</Citation>
</Reference>
<Reference>
<Citation>Wu N, Cai G and He Q, Oxidative stress and hepatic injury. World Chin J Digestol 16:3310-3315 (2008).</Citation>
</Reference>
<Reference>
<Citation>Brownlee M, The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615-1625 (2005).</Citation>
</Reference>
<Reference>
<Citation>Ogihara T, Asano T, Katagiri H, Sakoda H, Anai M, Shojima N et al., Oxidative stress induces insulin resistance by activating the nuclear factor-κB pathway and disrupting normal subcellular distribution of phosphatidylinositol 3-kinase. Diabetologia 47:794-805 (2004).</Citation>
</Reference>
<Reference>
<Citation>Singh I, Carey AL, Watson N, Febbraio MA and Hawley JA, Oxidative stress-induced insulin resistance in skeletal muscle cells is ameliorated by gamma-tocopherol treatment. Eur J Nutr 47:387-392 (2008).</Citation>
</Reference>
<Reference>
<Citation>Archuleta TL, Lemieux AM, Saengsirisuwan V, Teachey MK, Lindborg KA, Kim JS et al., Oxidant stress-induced loss of IRS-1 and IRS-2 proteins in rat skeletal muscle: role of p38 MAPK. Free Radic Biol Med 47:1486-1493 (2009).</Citation>
</Reference>
<Reference>
<Citation>Kriauciunas KM, Myers MG Jr and Kahn CR, Cellular compartmentalization in insulin action: altered signaling by a lipid-modified IRS-1. Mol Cell Biol 20:6849-6859 (2000).</Citation>
</Reference>
<Reference>
<Citation>Huang Z, Yang X and Cao W, Research on the herbal watercress herb. Chin Tradit Herb Drug 32:59-62 (2001).</Citation>
</Reference>
<Reference>
<Citation>Chen K. Isolation, identification and biological activity of flavonoids from watercress. PhD Thesis, Zhejiang University, China (2014). (in Chinese)</Citation>
</Reference>
<Reference>
<Citation>Zhang H and Piao H, Anti-arrhythmic and anti-lipid peroxidation effects of methanol extract of watercress. Med J Yanbian Univ 2:134-136 (1993) (in Chinese).</Citation>
</Reference>
<Reference>
<Citation>Piao RL and Zhang HY, Anticoagulant and antithrombotic effects of n-butanol extract from watercress. Food Sci 31:280-283 (2010).</Citation>
</Reference>
<Reference>
<Citation>Huang Z, Yang X, Cao W et al., Hypoglycemic effect of cress. Pharm Clin Chin Mater Med 5:35-36 (1996).</Citation>
</Reference>
<Reference>
<Citation>Yuan H, Shi F, Meng L and Wang W, Effect of sea buckthorn protein on the intestinal microbial community in streptozotocin-induced diabetic mice. Int J Biol Macromol 107:1168-1174 (2017).</Citation>
</Reference>
<Reference>
<Citation>Mujić A, Grdović N, Mihailović N, Živković J, Poznanović G and Vidaković M, Antioxidative effects of phenolic extracts from chestnut leaves, catkins and spiny burs in streptozotocin-treated rat pancreatic β-cells. Food Chem 125:841-849 (2011).</Citation>
</Reference>
<Reference>
<Citation>Attia ES, Amer AH and Hasanein MA, The hypoglycemic and antioxidant activities of garden cress (Lepidium sativum L.) seed on alloxan-induced diabetic male rats. Nat Prod Res 33:901-905 (2019).</Citation>
</Reference>
<Reference>
<Citation>Marshall SM, Blood pressure control, microalbuminuria and cardiovascular risk in type 2 diabetes mellitus: review article. Diabet Med 16:358-372 (1999).</Citation>
</Reference>
<Reference>
<Citation>Kumar N and Kar A, Pyrroloquinoline quinone (PQQ) has potential to ameliorate streptozotocin-induced diabetes mellitus and oxidative stress in mice: a histopathological and biochemical study. Chem Biol Interact 240:278-290 (2015).</Citation>
</Reference>
<Reference>
<Citation>Mokashi P, Khanna A and Pandita N, Flavonoids from Enicostema littorale Blume enhances glucose uptake of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway. Biomed Pharmacother 90:268-277 (2017).</Citation>
</Reference>
<Reference>
<Citation>Nisha P and Mini S, Flavanoid rich ethyl acetate fraction of Musa paradisiaca inflorescence down-regulates the streptozotocin induced oxidative stress, hyperglycaemia and mRNA levels of selected inflammatory genes in rats. J Funct Foods 5:1838-1847 (2013).</Citation>
</Reference>
<Reference>
<Citation>Arya A, Al-Obaidi MM, Karim RB, Taha H, Khan AK, Shahid N et al., Extract of Woodfordia fruticosa flowers ameliorates hyperglycemia, oxidative stress and improves β-cell function in streptozotocin-nicotinamide induced diabetic rats. J Ethnopharmacol 175:229-240 (2015).</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Anhui</li>
</region>
<settlement>
<li>Hefei</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<region name="Anhui">
<name sortKey="Chen, Xi" sort="Chen, Xi" uniqKey="Chen X" first="Xi" last="Chen">Xi Chen</name>
</region>
<name sortKey="Shi, Fangfang" sort="Shi, Fangfang" uniqKey="Shi F" first="Fangfang" last="Shi">Fangfang Shi</name>
<name sortKey="Yuan, Huaibo" sort="Yuan, Huaibo" uniqKey="Yuan H" first="Huaibo" last="Yuan">Huaibo Yuan</name>
<name sortKey="Zhu, Yudong" sort="Zhu, Yudong" uniqKey="Zhu Y" first="Yudong" last="Zhu">Yudong Zhu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/BiopestPeptidV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000109 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000109 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    BiopestPeptidV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31875960
   |texte=   Effect of garden cress in reducing blood glucose, improving blood lipids, and reducing oxidative stress in a mouse model of diabetes induced by a high-fat diet and streptozotocin.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31875960" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a BiopestPeptidV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 19:22:35 2020. Site generation: Thu Nov 19 19:33:26 2020